

American Institute of Aeronautics and Astronautics

1

Radio-hosted Flight / Ground Interface for Operations
Standardization

Dr. Christopher A. Grasso1
Blue Sun Enterprises, Boulder, Colorado, 80302

and
Robert Lock2 and Patricia d. Lock3

Jet Propulsion Laboratory / California Institute of Technology, Pasadena, California, 91109

The interface between a spacecraft and its ground operations segment
includes the flow of commands, configuration, and sequencing elements to
the spacecraft, and the flow of telemetry and data products from the
spacecraft. Creating and implementing a complete definition of this interface
simplifies and standardizes mission operations, allowing easy sharing of
operations personnel across missions. Early spacecraft featured a simple
flight / ground interface (FGI) using hardware command decoding in the
radio, driven by technological limitations of the time. Modern spacecraft use
command and data handling (CDH) avionics on which flight software
executes, which in turn controls and configures the mission, executes
subsystem and instrument instructions, and implements critical fault
protection actions. Deep space missions feature advanced operations
software for running sequenced activities over a period of weeks, which
allows them to function with only infrequent ground contact. This approach
comes at the cost of increased complexity in the FGI, requiring expensive
modifications to heritage flight software and ground systems. By hosting the
interface in the radio instead of the CDH avionics, modern missions can
approximate the FGI design simplicity of early spacecraft, with significant
advantages for vendor competition, lowered costs, standardization of
operations, and reduction of implementation risk.

I. Mission Operations Domain
ission operations for spacecraft involves both the uplink of products to the spacecraft and
the return of mission data. Deep space mission operations may be viewed as a function of

the mission objectives, and consists of three items, in priority order:
 1. Collect science data to achieve the mission objectives

1 Principal VML Engineer, Blue Sun Enterprises, 1942 Broadway Suite 314, Boulder, CO,

80302, Senior Member.
2 Orbiter Concept Development Manager, Mars Program Formulation Office, Jet Propulsion

Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, Member.
3 Mission Operations Assurance Manager, Office of Safety and Mission Assurance, Jet

Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, Member.

M

American Institute of Aeronautics and Astronautics

2

 2. Operate the flight system to collect science
 3. Build, test, and deliver the flight system in order to have a platform to operate

Collecting science to achieve the mission objectives (objective 1) requires successful operation
of the flight system to collect the science (objective 2). The more operable the flight system
design (objective 3), the simpler the operations team's job becomes. Operability therefore has a
substantial impact on cost, risk, and data return [14].

Products radiated include, at a minimum, immediate commands that are interpreted by the
spacecraft in order to perform an action. Deep space missions are subject to light speed delays
that drive the need for autonomy. Therefore, those missions generally employ stored commands
called sequences. Mission operations products are defined in the context of a Mission Operations
System (MOS). The MOS includes a Ground System (GS) that assists users in deriving the
products needed onboard the spacecraft, as shown in Figure 1. Products to be delivered to the
spacecraft include commands, sequences, configuration information, and software patches.

Figure 1: A simplified view of mission operations functions, showing the flow of data through the system

Onboard the spacecraft, the GS interfaces to the command system and file system of the

spacecraft in order to deliver products used onboard to produce science. Sequences execute
commands from an onboard store based on time and, in some cases, events and conditions. The
sequence store frequently takes the form of files to be loaded, as do configuration data which
govern the low-level operation of various software tasks and hardware elements. By migrating
some portions of the interface to the radio onboard, we will show that the adaptations required to
the MOS and spacecraft in order to integrate them together can be virtually eliminated.

II. Predecessor concepts

A. Hardware commands
A hardware command decoder translates commands received by the radio directly into

actions aboard the spacecraft. Commandable spacecraft originally featured only hardware
commands, wherein the bit stream arriving in the radio was tested by the hardware command
decoder, and all spacecraft actuation was directly implemented: typically, the opening or closing

commands, sequences, configuration data

Ground System
MOS DSN

Uplink

Downlink

Station

Command
Processing

Telemetry
Data

Processing
Tracking

Data
Processing

Mission
Monitoring

Navigation

Data
Management,

Archiving

Flight
System

Analysis

Sequence
coding

Data
Archive

Science
Users

Science
Data

Processing

Mission
Planning

science plans

activity rqsts

Flight System

CDH

Radio

Uplink

Downlink

American Institute of Aeronautics and Astronautics

3

of switches and the setting of signals as shown in Figure 2 [13]. This uses the radio as the
command subsystem, in essence hosting within the radio the flight-ground interface for control
of the spacecraft. Commercially available radios had well-defined signal interfaces that could be
connected to flight hardware, thereby standardizing the flight-ground interface on spacecraft
using the same radio.

Figure 2: Command path from radio to actuators through hardware command decoder

Modern spacecraft generally reserve hardware commanding for critical spacecraft instructions

to be executed in the event that flight software is no longer responsive. These critical commands
may include resetting components like the CDH or radio, selecting hardware sides where
redundant hardware is available, or modifying critical memory registers.

B. Modern flight software architecture with software commands
On modern spacecraft, the presence of a command and data handling (CDH) unit running

flight software typically dispatches the majority of commands, using software interpretation of
standardized command packets (e.g. CCSDS packets). By centralizing the command
interpretation within the flight software, commands of considerable complexity may be
implemented, to which the flight-ground system must be adapted.

Figure 3: Command path from radio to software

 Figure 3 illustrates the data flow paths of a CCSDS command packet from uplink, the

extraction of data, and the dispatch of this data by the flight software to the appropriate software
component for execution. Flight software executing on the CDH obviates the need for an
extensive set of hardware commands, instead utilizing a software command dispatch system.

Prime Power

Uplink

Onboard
Computer

Hardline
Test

Command
Source

Arbitration

Command
Message

Validation

Command
Message
Decoding

High-Level
Discrete

Low-Level
Discrete

Serial
DigitalOver/Under

Voltage
Detect

Pulse

Pulse

Clock
Data

Enable

Command
Decoder

Telecom
Handler

Command
Extract

Command
Verify

Command
Dispatch

Clock

Uplink High-Level
Discrete

Low-Level
Discrete

Serial
Digital

CDH

Telem

Thermal

Power

Pulse

Pulse

Data

Enable
Clock

•
•
•

American Institute of Aeronautics and Astronautics

4

C. Virtual Machine Language sequencing
Sequencing is the execution of commands from a store onboard the spacecraft. Spacecraft

featuring simple sequencing execute commands according to absolute time, i.e. when a specific
time comes to pass. More modern sequencing typically also allows relative time sequencing,
wherein the execution of a statement is dependent on the completion of a prior statement rather
than an absolute time value. Modern sequencing systems may also allow reusable sequence
elements, conditional execution, and event reaction.

Virtual Machine Language (VML) is an advanced sequence processing language specifically
tuned to the needs of spacecraft operations. It contains sufficient functionality to allow operators
to implement solutions that in the past would have required the development of expensive,
mission-unique flight software. The language is simple enough that it avoids most of the
problems associated with typical flight software developed in C, C++, or Ada, while providing
enough flexibility to implement elegant, straightforward operations.

VML does not run on the "bare iron" of the host microprocessor. Instead, the language is
implemented as a byte code binary, and is interpreted at runtime by onboard software known as
the VML Flight Component. This approach provides a safe sandbox for execution, eliminating
issues such as race conditions, out-of-bounds memory accesses, division by zero, type coercion
errors, or missing functions. It also simplifies deployment to a wide variety of processors.

Virtual Machine Language development started in 1997. Six versions have been implemented
so far. VML has been used or is in use on fifteen NASA flight missions and technology
demonstrators to date, including Stardust[2], Genesis, Mars Odyssey, Spitzer Space
Telescope[3][4], MRO, Dawn, Phoenix[11][12], Juno, GRAIL, MAVEN, OSIRIS-REx, InSight,
and the Resource Prospector lunar regolith analysis instrument package. A timeline of software
development and use over the last 20 years appears in Figure 4.

Figure 4: VML heritage, 1997 - 2018, 88 flight years, showing VML versions used on a variety of

NASA deep space missions, from original VML 0 through commercialized VML 3.0

American Institute of Aeronautics and Astronautics

5

The VML flight execution environment [1] provides multiple threads of parallel execution
within one operating system task context using a data-driven construct known as a sequencing
engine. VML allows an extensive set of variable types, including integers, floats, Boolean
values, strings, and arrays. Arithmetic and trigonometric calculations, logical manipulations, and
vector/matrix operations are available for use. Conditionals may also be used to make decisions
based on local values at runtime. WHILE and FOR loops perform iteration.

VML sequences exist as named functions which can accept parameters and have local
variables. Functions may be packaged together into a single file that is loaded onto an engine in
order to associate runtime behavior or to provide libraries of commonly needed services. Objects
with methods package code and data together, simplifying development and management of
products. Specialized objects called state machines provide a directly-executable set of reactive
actions, and can intrinsically coordinate together to perform sophisticated autonomy as an expert
system.

D. Spacecraft Telecommand Radio System: STRS
Modern space radios are implemented in a software-defined fashion rather than as specialized

hardware, using a CPU and software running at
sufficient speed to perform processing on
arriving signals in order to encode and decode
data and manage hardware. Because of the
presence of a processor and memory, these
software-defined radios can host flight
software of sufficient complexity to operate a
mission. NASA's Spacecraft Telecommand
Radio System (STRS) [15] is one set of
standardized software specifications for such a
radio, finding wide application in the arena of
spacecraft communications. STRS explicitly
provides for application hosting within the
radio, making it an excellent candidate
environment for executing sequencing,
commanding, and specialized navigation
needed for complex deep space missions. The
STRS system is illustrated in Figure 5.

STRS features a well-defined application programming interface accessible to a series of
waveform applications which can be dynamically loaded and unloaded as needed at runtime,
allowing the radio to be updated in-flight with modified and new capabilities. Applications
interface to the radio hardware through a hardware abstraction layer (HAL), which in turn
interfaces to the hardware either directly or via POSIX-compliant input/output drivers. STRS
runs atop a real-time operating system like RTEMS[16].

III. Using the radio as an extension to the flight/ground interface
Currently, a multi-mission MOS must incorporate a new spacecraft, the team can:

1) Modify the MOS to accommodate a new and potentially very different command and
sequencing paradigm, with associated cost and schedule risk

2) Modify the flight software of the new spacecraft with a known sequencing capability,
with associated cost, schedule risk, and performance risk

Figure 5: STRS software architecture controlling

radio and hosting waveform applications

American Institute of Aeronautics and Astronautics

6

Both of these approaches have disadvantages.
Modifying the MOS requires mapping flight capabilities onto ground representations which

may not adequately implement them, causing flight capabilities to be inaccessible to or poorly
modeled for the operations team. Modifying the flight software may prove an undue burden on
personnel, flight resources, and development processes. Differing priorities for costing and
implementing the modifications may cause the flight and ground organizations to be at odds.
Misunderstanding of functionality may lead to incorrect behavior of the end-to-end system that
adds risk and requires time and resources to correct. Accurate schedule estimates for the work
may be difficult to derive given the complexity of integration.

Since every spacecraft requires a radio, and since modern software-defined radios using the
STRS standard can host complex applications, a third option becomes possible: host the
command and sequencing portion of the flight/ground interface within the radio itself. This
leaves the host flight software and the ground data system unchanged, allows personnel to use a
familiar sequencing capability, and requires little additional investment of time and money
outside of defining mission-specific commands. In addition, since radios are frequently furnished
by JPL to its vendor-built spacecraft, a simple means for integrating time-tested heritage
sequence capabilities is provided by simply delivering a radio that already includes the desired
software.

A. Radio-hosted sequencing
Figure 6 shows a flight

software core and VML flight
software integrated with an
STRS implementation as it
would be hosted in a suitable
software-defined space radio.
Two such radios have been
developed by JPL: the
Universal Space Transponder
[18], and the Iris radio [19].
Other STRS-compatible radios
should reach the market in the
coming years, and could
accommodate standardized
flight / ground interface
elements given sufficient
unused resources, including
CPU cycles, memory, and file
system space. The flight
software core could be any of a
number of different available
systems, including Core Flight System / Core Flight Executive [17] (an open source spacecraft
flight software package provided by NASA) and VML 3 (provided by BSE). While STRS calls
out RTEMS, it may also be possible to adapt the system to work with other real-time operating
systems such as VxWorks. Hosting the command elements of the flight / ground interface in the
radio could therefore allow a great deal of flexibility in selection of the software components to
be hosted.

Figure 6: STRS hosting flight software core and VML 3

American Institute of Aeronautics and Astronautics

7

The resulting command flow shown in Figure 7 ends up looking very much like the hardware
command decoder of early space missions shown in Figure 2. Commands arrive onboard the
spacecraft from the ground system. Immediate commands for the radio are interpreted within the
radio software elements, and those intended for the host spacecraft are passed through to the
CDH for interpretation. Sequences dispatch commands which are either routed to software
elements in the radio or out to the CDH. Also shown is a return path of telemetry from the CDH
for downlink, which also may be used to determine conditions governing logic within sequences.

Figure 7: Command and telemetry flow of radio-hosted FGI command element

With the command and sequencing element of the flight / ground interface in the radio, the

overall system appears as in Figure 8. Implementation of the flight/ground system no longer
requires extensive mission adaptation on the ground side, nor do vendor-provided elements of
the flight system have to be altered to accommodate the standardized sequencing system.

Figure 8: Sequencing element of the flight / ground interface hosted in the radio

B. Radio-hosted service: automated navigation, trajectory calculation, and maneuver derivation
In addition to sequencing, other services could be hosted in the radio. Once a flight software

core is in place and using the STRS software infrastructure, the ability to interface to various
services is greatly simplified. One such service is the AutoNav[7][8] software, built by JPL to
perform on-board optical orbit determination, trajectory calculation, and maneuver derivation.

STRS
radio

CDH

Telecom
Handler

Command
Extract

Command
Verify

Command
Dispatch

Clock

Uplink

Serial
Digital

Telem

Thermal

•
•
•

Downlink
Sequencing

Flight System

CDH

Radio

Uplink

Downlink

Sequencing

commands, sequences, configuration data

Ground System
MOS DSN

Uplink

Downlink

Station

Command
Processing

Telemetry
Data

Processing
Tracking

Data
Processing

Mission
Monitoring

Navigation

Data
Management,

Archiving

Flight
System

Analysis

Sequence
coding

Data
Archive

Science
Users

Science
Data

Processing

Mission
Planning

science plans

activity rqsts

American Institute of Aeronautics and Astronautics

8

This sophisticated software could prove challenging to integrate into a vendor's flight software
build, but can be easily accommodated within the STRS environment alongside VML and the
flight software core. Figure 9 illustrates the inclusion of AutoNav. This type of service could
prove to be a powerful incentive to missions to adopt onboard autonomy at low risk and low
cost, thereby saving host missions money, decreasing personnel costs, and reducing mission risk.

Figure 9: Radio-hosted VML sequencing with AutoNav

IV. Potential host deep-space STRS radios

C. Universal Space Transponder and Iris Radio
Hardware for the Universal Space Transponder (UST) [18] and the Iris radio version 2 [19]

appear in Figure 10. These two radios are both built around STRS and form the backbone of
future transponder offerings from JPL. The UST is targeted at large spacecraft with high power
transmission and high-speed data, and can operate in the UHF-band, S-band, X-band, and Ka-
band frequencies, either exclusively or in combinations. The Iris radio is targeted at small
spacecraft, including those with a CubeSat form factor, and is currently available in the X-band
and UHF-band frequencies. Iris is also commercially produced by the Spacecraft Dynamics Lab,
a non-profit research corporation of the Utah State University Research Foundation.

VML sequencing requires approximately 1.5 MB of memory for executable code, data, and
sequence files. Various flight software cores and real-time operating systems may range in
memory footprint from 2 MB on up. UST and Iris currently offer 384 MB (3 Gbits) and 2 MB of
SRAM, respectively. While the current UST hardware should provide enough memory to
support both its own internal operation and hosting external software, future expansion of the on-
board SRAM in Iris would enable it to serve as a host.

AutoNav
Flight Software

Services
C code

Optical

Nav

Trajectory

Ephemeris

Ranging

Radio-
metrics

Maneuver

Pointing

 VML Flight
Software

C code

VML
Global

Variables

Flight
Software

Core
cFS/cFE,

LM, BRIDGE,
Foundation,

others

HW
i/o

 Sequence plug-ins
Eng library

Instrument
Science director

Flight director
Fault protection

Master

•••

VML scripts

GNC plug-ins
Maneuver ctrl

Radiometrics
Imaging

Trajectory calc
Orbit det

Attitude profiler

• • •

VML scripts cm
d

tlm evr
file

 Comm plug-ins
Iris library
DSN manager
Packet manager

RAC manager
Downlink director

Uplink director

•••

VML scripts

RTOS
RTEMS,

VxWorks, …

Files / BuffersPOSIX
i/o

drivers

data flow timing

file

cmd
tlm
evr

gv

upl

HAL

High Speed
Scheduler

Frame
maps

Config
service

Applet
service

RF
service STRS API

Applet storage

Waveform
plug-in applet

Waveform
plug-in applet • • •

Other plug-
in applet

hss

hss

cmd
tlm
evr
dwn
file

RF

American Institute of Aeronautics and Astronautics

9

Figure 10: Universal Space Transponder (left) and Iris radio v. 2 (right)

D. CCSDS Command routing
The CCSDS standard for

packetization and framing of
spacecraft uplink products
contains two routing features
that would prove useful for
radio-hosted sequencing: the
virtual channel [20] and the
application process identifier
(APID) [21]. A virtual channel
value between 0 and 63
associates an arriving packet
with a desired command
destination. By convention on
many JPL deep space missions,
VC-0 is used for hardware
commands to the radio, VC-1
provides software commands
for immediate execution, and
VC-2 handles file uploads. For
each virtual channel, an APID
value of between 0 and 2039 is

available in the packetization scheme to associate arriving command packets with applications
that can react to those packets. These conventions are followed in the command routing
technique described here. For instance, suppose a spacecraft is not already using VC-1 and VC-2
for its own purposes. Figure 11 shows the arrival of packets on various virtual channels, with
VC-0 packets resulting in setting of a discrete signal, VC-1 being forwarded to the internal
command dispatcher within the radio, and VC-2 resulting in the deposition of files within the file
system.

Figure 11: Virtual channels and APIDs route radio commands, files

American Institute of Aeronautics and Astronautics

10

Each vendor spacecraft and
associated instrumentation will
have its own specification of VC
and APID usage, requiring the
radio usage of APIDs and
spacecraft / instrument usage of
VCs and APIDs be deconflicted.
In cases where virtual channels
are used in common between the
radio and the CDH, the radio can
be programmed to use specific
APIDs that are not in use on the
host CDH for its commands and
file data on VC-1 and VC-2.

Note that spacecraft commands
implemented using opcode
definitions provide another
avenue to differentiate between
radio commands and spacecraft
commands. The radio command

opcodes are chosen to deconflict them from the spacecraft commands, regardless of the APID
and virtual channel on which the commands are delivered. Doing so requires the radio to
examine each immediate command upon arrival or issuance from sequencing to make the
evaluate / forward decision.

Forwarding of command and file data from the radio into the spacecraft CDH is illustrated in
Figure 12. Commands on VC-1 which are not intended for the radio are identified using APID or
opcode values and forwarded out the serial link to the CDH as CCSDS packets. In a similar
fashion, file data on VC-2, and all data on VC-3 through VC-63 is forward to the CDH.

E. Telemetry reporting
Downlink from the spacecraft includes telemetry produced by the CDH and telemetry

produced by the operation of the radio and its applications. The radio can be configured to use a
technique known as prechannelization, in which the format of a telemetry packet is variable,
consisting of pairs of identifiers and values that are interpreted after receipt on the ground in
order to extract telemetry. APID usage between the CDH and the radio can be easily deconflicted
by reserving certain APIDs which are not used by the CDH as originating from the radio.

It may be necessary to interpret a subset of the telemetry originating from the CDH in order to
allow sequences running in the radio to react to spacecraft conditions. VML 3 allows reactive
responses based on spacecraft conditions and keeps a mirror of reported telemetry items in its
global variable list. The data flow of these items is illustrated in Figure 13. In cases where the
overhead associated with extracting and interpreting telemetry items from every received
CCSDS packets proves impractical due to limitations on available CPU and i/o resources, a
specific report with a limited number of measurements may be sent to the radio from the CDH
using a designated APID.

Figure 12: Forwarding of spacecraft command and file data to CDH

American Institute of Aeronautics and Astronautics

11

V. Advantages of standardized radio-hosted flight/ground interface
Every flight system has some kind of interface with the ground. As most deep-space missions

are unique, parts of their flight software may also be unique. Without a standardized interface,
each flight system will need to have a customized interface.

For most missions, there is an existing ground software/hardware system that will be adapted
to command and monitor the mission. In most of these ground systems, the sometimes-painful
lessons learned from years of spacecraft operations have been built into software, processes, and

procedures. This “corporate
memory” is invaluable and must
be maintained. While the
ground system often evolves
over many missions, either each
new spacecraft design will
entail changing the ground
system, or each spacecraft must
be designed to interface with
the ground system as it stands.
Systems that support a number
of different missions
concurrently can become
inflexible, and changing them
imposes risk.
 This situation requires
mission managers to have to
make a difficult choice between
changing the ground to match
flight (slow and risky, possible
risk to multiple missions),
changing flight to match the
ground (expensive and risky),

or some combination of both. This often limits mission developers to only a few vendors with
existing, well-understood interfaces. Migrating part of the flight-ground interface onboard puts
much-needed flexibility back into the hands of the developers and operators.

A. Lower cost to adapt to new mission
Standardizing how the FGI is adapted to each new mission provides savings in both cost and

risk. Much of the information needed by both flight and ground can be pre-planned and pre-
formatted, making a first-cut adaptation quick to create and inexpensive to implement. For
example, command formats and a map of needed engineering telemetry could be pre-defined,
with a map of APIDs created to match standard telemetry types and APID deconfliction routines
scripted. A first cut adaptation for testbed use could be made in a matter of hours once some
limited spacecraft commands and telemetry are provided. Adjustments during integration and
test can easily be made by adding new commands and telemetry items incrementally to the
formats in use. From one mission to the next, a “library” of mission adaptations accumulates, and
the non-recurring engineering cost virtually disappears.

Using VML as the flight-ground interface system also allows development of mission-
independent MOS functions and ground system components, with low-cost adaptations for new

 Figure 13: CDH sending normal telemetry to ground and

engineering subset to sequencing

American Institute of Aeronautics and Astronautics

12

host spacecraft and payloads, and low-cost inclusion of autonomy features, even in flight.
Moving the sequencing function from the CDH to the radio allows more straightforward
adaptation to each mission. Rather than customizing to each spacecraft’s CDH flight software,
adaptations need only address radio changes since the most recent mission, and the specific set of
commands, sequence constructs, and telemetry of the new mission.

Costs for adaptation drop from many work-years of software development and test under the
traditional paradigm down to a low-level effort of adaptation management after a brief early
period of adaptation definition. Prior missions provide typical examples for costing a
traditionally adapted system. Assuming a mission features a file system onboard, between three
and five work years is necessary for the uplink adaptation before launch using the traditional
development methodology. Generally, the first year of cruise operations involves significant
maintenance time, with additional maintenance required when science operations start. In
contrast, embedding the FGI in the radio brings with it a standardized and tested software service
infrastructure, and as such would require a fraction of a work year for a new mission. This
creates a savings per mission of approximately six work years or more.

B. Lower learning curve for personnel
Standardized interfaces allow for standardized tools, training, and sharing of both

development and operations personnel. Sharing of personnel for short-term “surges” in team size
during parts of integration and test or launch/checkout is more manageable when shared staff are
already fully versed in the tools and processes. Training of new staff speeds up since this training
can occur in a range of venues, having concepts shared among the missions. The focus of
training for a mission becomes learning the differences among missions rather than first
struggling with different concepts, tools, and processes.

C. Reduced schedule risk for adaptation
With a standardized interface pre-defined by the selection of a radio hosting VML, a specific

mission adaptation can be defined quickly and safely. Well before any unique flight software is
ready for testing, the flight-ground interface can be up and running in a testbed. This allows very
early definition and testing of both the radio’s interface with spacecraft flight software using a
simulation and the adaptation for the mission specifics. This also leads to the ability to simulate
operations strategies while changes can still be made to the flight system design. [14]

D. Lower barrier to entry for LEO and GEO providers to deep space
 Past deep space missions have relied on highly capable and diversified spacecraft vendors to

supply host spacecraft in support of challenging mission environments and specialized payloads.
In response, vendors have built complex and customized flight software systems, and the MOS
developers have created many custom features to interface with the missions. This has led to
unique integration and test environments, unique ground systems, and highly specialized
operations procedures. Few vendors have the capabilities or the business models to compete in
this type of environment.

By locating the FGI in the deep space radio, virtually any spacecraft vendor can provide
spacecraft and participate in deep space missions. The only changes needed are a physical and
data connection to the deep space radio and whatever modifications would otherwise be needed
for the mission environment. Because of the availability of the UST and Iris deep space radios,
many kinds of spacecraft can be included in deep space missions without extensive and
expensive flight software modifications. These range among low-cost LEO spacecraft, more

American Institute of Aeronautics and Astronautics

13

capable GEO spacecraft, and high cost / high complexity spacecraft intended for other types of
orbits such as for outer planets missions. Many vendors and scientific organizations lack an in-
house flight software customization capability: these vendors would be able to participate in
deep space missions without the need for significant flight software changes.

Organizations providing MOS services will also have lower barriers to participation. The
standardized FGI in the radios allows their services to be independent of the flight software
interfaces of the host spacecraft. Diverse and distributed operations organizations could then
interact with a wide variety of spacecraft providers without having to develop a unique
infrastructure. This has been demonstrated on JPL missions where instrument payload
organizations successfully operate those instruments using their in-house operations systems and
teams, maintaining independence from the host spacecraft and the JPL MOS.

Mission development organizations, formerly exclusively government entities, are growing in
diversity as well. Private groups, commercial companies, educational organizations, and
consortia of any of these are now planning Earth orbiting missions and could soon attempt deep
space missions. The ability to select spacecraft vendors, operations system providers, and
payload providers from a broad and diverse pool and connect them inexpensively through a
standardized flight/ground interface can enable such missions by keeping costs reasonable.

VI. Conclusions
The growing use of software defined radios, including the Iris and the Universal Space

Transponder from JPL, provides a unique opportunity to simplify the flight/ground interface and
standardize deep space operations. The presence of STRS within these radios furnishes an
application hosting capability which can run complex sequencing software such as VML 3, and
specialized navigation services including AutoNav. These capabilities would allow considerable
automation standardization for a wide variety of deep-space missions, and standardize the
flight/ground interface of these missions. Standardizing the FGI in this way yields cost and risk
reductions, and presents a simple and convenient means for providing spacecraft which were
originally designed for LEO and GEO with the operations capabilities and autonomy needed for
accomplishing challenging deep space missions.

Acknowledgments
Some of the work described in this paper was carried out by Blue Sun Enterprises, Inc., under

an agreement with the National Aeronautics and Space Administration, and administered by the
Office of Chief Technologist as a Small Business Innovation Research grant. Part of this work
was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

American Institute of Aeronautics and Astronautics

14

References
Reports, Theses, and Individual Papers

1Grasso, C. A., Lock, P. d., “VML Sequencing: Growing Capabilities over Multiple Missions”, AIAA Space Operations
Conference Proceedings, April 2008.

2Grasso, C. A., “The Fully Programmable Spacecraft: Procedural Sequencing for JPL Deep Space Missions Using VML

(Virtual Machine Language)”, IEEE Aerospace Applications Conference Proceedings, March 2002.

3Grasso, C. A., “Techniques for Simplifying Operations Using VML (Virtual Machine Language) Sequencing on Mars

Odyssey and SIRTF”, IEEE Aerospace Applications Conference Proceedings, March 2003.

4Peer, S. and Grasso, C. A., “Spitzer Space Telescope Use of Virtual Machine Language”, IEEE Aerospace Conference

Proceedings, December 2004.

5Grasso, C. A., “Virtual Machine Language (VML)”, NPO 40365, JPL Commercial Programs Office, Innovative Technology

Asset Management Group, Docket Date: 12-May-2003.

6Grasso, C. A., “Virtual Machine Language (VML) NASA Board Award”, NASA Inventions and Contributions Board,

NASA Technical Report 40365, Award Date: September 7, 2006.

7Riedel, J. E., et. al., “AutoNav Mark 3: Engineering the Next Generation of Autonomous Onboard Navigation and

Guidance”, AIAA Guidance, Navigation, and Control Conference, August 2006.

8Riedel, J. E., Grasso, C. A., et. al., “Configuring the Deep Impact AutoNav System for Lunar, Comet and Mars Landing”,

AIAA Astrodynamics Specialist Conference, August 2008.

9Grasso, C. A., Riedel, J. E., “VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling”,

AIAA Space Operations Conference Proceedings, May 2012.

10Grover, M., Cichy, D., Dasai, P.N., “Overview of the Phoenix Entry, Descent and Landing System Architecture,” AIAA

Paper AIAA 2006-7218, AIAA/AAS Astrodynamics Specialist Conference; Honolulu, HI, 18-21 August 2008.

11Garcia, M., Fujii, K., “Mission Design Overview for the Phoenix Mars Scout Mission,” AAS Paper 07-247, AIAA/AAS

Space Flight Mechanics Meeting; Sedona, AZ, 28 January -01 February 2007.

12Grasso, C. A., Riedel, J. E., Vaughn, A.T., “Reactive Sequencing for Autonomous Navigation Evolving from Phoenix

Entry, Descent, and Landing”, AIAA Space Operations Conference Proceedings, April 2010.

13Wertz, J. R., Larson, W. J, Space Mission Analysis and Design, 3rd edition, (c)1999, W. J. Larson and Microcosm, Inc., pp.

397-398.

14Grasso, C. A., Lock, P. d., “Flight-Ground Integration: the Future of Operability”, Space Operations: Innovations,

Inventions, and Discoveries, edited by Cruzen et al., 2015.

15Space Telecommunications Radio System (STRS) Architecture Standard, NASA Technical Standard Rationale NASA-

HDBK-4009, Approved: 06-05-2014.

16Real-Time Executive for Multiprocessor Systems (RTEMS) home page, www.rtems.org.

17cFS/cFE, Core Flight System / core Flight Executive home page,
cfs.gsfc.nasa.gov/Introduction.html.

18Pugh, M., et al., “The Universal Space Transponder: A Next Generation Software Defined Radio”, IEEE Aerospace

Conference Proceedings, 2017.

19 Duncan, C., et al. “Iris Transponder – Communications and Navigation for Deep Space,” Proceeding of the 28th Annual

AIAA/USU Conference on Small Satellites, 2014.

20Consultative Committee for Space Data Systems Recommendation for Space Data System Standards, Telecommand Part 2,

Data Routing Service, Blue Book, CCSDS 202.0-B-3, June 2001.

21Consultative Committee for Space Data Systems Recommendation for Space Data System Standards, Space Link

Identifiers, Recommended Standard, Blue Book, CCSDS 135.0-B-3, October 2006.

Related web sites

Blue Sun Enterprises VML Website www.bluesunenterprises.com
Space Dynamics Laboratory Website www.spacedynamics.org

